16.12.2025 18:15 1/2 Vorsätze für Maßeinheiten

Vorsätze für Maßeinheiten

Amateurfunk hat physikalische Grundlagen - und dementsprechend muss man mit physikalischen Größen umgehen. Derer gibt es sehr viele, und obwohl wir im Amateurfunk lange nicht alle physikalischen Größen brauchen sind es doch so viele, dass wir uns mit den Größenbeschreibungen beschäftigen müssen. Der Mensch hat "seinen Erfahrungsbereich" in allen Einheiten, die ihn im täglichen Leben umgeben. Doch sind diese Erfahrungen oft nur ein winziger Teil der tatsächlich möglichen Größen…

Im Folgenden verwende ich "nur" die Zahlen - die dahinterstehende Einheit kann vielfältig sein (z.B. Meter, Gramm, Ampere, Farad, Henry…)

Symbol	Name	Ursprung	Potenz	
Υ	Yotta	ital. otto = acht	1024	1.000.000.000.000.000.000.000.000
Z	Zetta	ital. sette = sieben	1021	1.000.000.000.000.000.000
E	Exa	gr. héx = sechs	1018	1.000.000.000.000.000
Р	Peta	gr. petannýnai = alles umfassen / gr. pénte = fünf	1015	1.000.000.000.000
Т	Tera	gr. téras = Ungeheuer / gr. tetrákis = viermal	1012	1.000.000.000
G	Giga	gr. gígas = Riese	10 ⁹	1.000.000.000
M	Mega	gr. méga = groß	106	1.000.000
k	Kilo	gr. chílioi = tausend	10 ³	1.000
h	Hekto	gr. hekatón = hundert	10 ²	100
da	Deka	gr. déka = zehn	10¹	10
_	_	_	10°	1
d	Dezi	lat. decimus = Zehnter	10-1	0,1
С	Zenti	lat. centesimus = Hundertster	10-2	0,01
m	Milli	lat. millesimus = Tausendster	10-3	0,001
μ	Mikro	gr. mikrós = klein	10-6	0,000.001
n	Nano	gr. nános = Zwerg	10-9	0,000.000.001
р	Pico	ital. piccolo = klein	10-12	0,000.000.000.001
f	Femto	skand. femton/femten = fünfzehn	10-15	0,000.000.000.000
a	Atto	skand. arton/atten = achtzehn	10-18	0,000.000.000.000.001
Z	Zepto	lat. septem = sieben	10-21	0,000.000.000.000.000.000.001
у	Yokto	gr. októ = acht	10-24	0,000.000.000.000.000.000.000.001

Unter einem Meter kann man sich noch was vorstellen, ein Millimeter geht auch noch, aber bei allem, was darunter liegt, braucht man Hilfsmittel, um es überhaupt erfassen zu können. Irgendwann ist es dann auch so klein, dass es kleiner ist als die Wellenlänge des sichtbaren Lichtes - dann ist selbst mit (Licht)-Mikroskopen Schluss. Dann kann man noch mit Elektronenmikroskopen weitermachen - aber irgendwann ist selbst damit Schluss. Es bleibt nur die Vorstellung, die wir haben. Wir bauen uns etwas in unserem Gehirn auf, damit wir das verstehen können. Das ist ein gängiges Verfahren - man nennt es auch "wir bauen uns ein Modell". Und das "bauen" muss nicht handwerklich gemeint sein - man kann auch "nur mit Gedanken" bauen…

Andersherum geht es in Richtung groß weiter, bis die Vorstellungskraft am Ende ist. Dabei ist die Größe "Meter" in Makrodimensionen (wie z.B. dem Weltall) keine sehr glückliche Größe, weil selbst

mit den Größenvorsätzen von oben wird es schwer. Deswegen nahm man lange das "Lichtjahr". Das ist die Entfernung, die das Licht in einem Jahr zurücklegt. Und das Licht ist (für menschliche Vorstellungskraft) verdammt schnell: 300.000 Kilometer / Sekunde (übrigens genauso schnell sind auch alle anderen elektromagnetischen Wellen wie Funkwellen). Eine Minute hat 60 Sekunden, eine

Stunde 60 Minuten, ein Tag 24 Stunden, ein Jahr 365 Tage. Dann multipliziert mal los Die Zahl ist nicht schlecht - aber nur ein Lichtjahr. Und - ihr ahnt es vielleicht schon - selbst das Lichtjahr ist für die Entfernungen, die es in unserem Universum gibt, noch "zu klein"! Also schuf man das Parsec...

Vieles, was uns umgibt, können wir nur mit Hilfe von Modellen verstehen - auch einige Dinge aus dem Amateurfunk gehören dazu...

https://amateurfunk-sulingen.de/wiki/ - Afu - Wiki des DARC OV Sulingen I40

 $https://amateurfunk-sulingen.de/wiki/doku.php?id=amateurfunk-ag_der_carlprueterschule: 01-vonganzkleinbisganzgross\&reinbisganzgross and the sulface of the$

Last update: 16.08.2017 15:30

