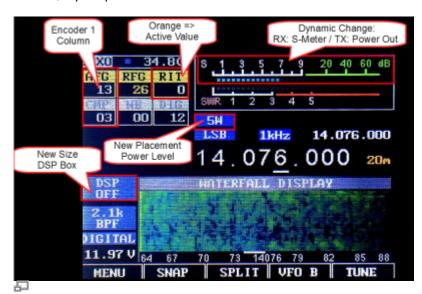
16.12.2025 18:10 0VI40 short description

english publish

OVI40 short description

The OVI40-SDR was inspired by the mcHF SDR project. Compared to the mcHF the OVI40-SDR has implemented some major hardware improvements. The OVI40-SDR is using a much more powerful MCU with more processing power, RAM and Flash ROM. The software running on the OVI40-SDR is the UHSDR software which takes full advantage of the evolving OVI40-SDR features. Both projects - OVI40-SDR and UHSDR - are initiated by the same group of hamradio amateurs and both are in active development. Due to mcHF hardware limitations a sub-set of UHSDR runs also on the mcHF.


The OVI40-SDR **Hardware** is covered by the OVI40-SDR project. The **Software** is covered by the UHSDR project.

The OVI40-SDR is currently in development. The processor- and UI board is already available. The RF board is in the final stages of development with beta-testing starting soon. Both projects - OVI40-SDR and UHSDR - will continue to stay in active development as they did for the past.

OVI40-SDR Hardware

Hamradio Transceiver for the following ham bands:

- 135 kHz & 472 kHz
- 160m, 80m, 60m, 40m, 30m, 20m, 17m, 15m, 12m, 10m
- 6m, 4m, 2m

UHSDR Basic Screen Layout (from Github UHSDR Projekt)

Note: ToDo: Change screen shot to recent UHSDR screen shot

The transmit power is designed to be 50 W (software controllable). The OVI40-SDR is a true SDR "Software Defined Radio". It contains a STM32 microcontroller with LCD touch-screen display panel

and enables operation as stand-alone rig without the need for additional laptops / PCs etc. Due to its SDR architecture many relevant characteristics are not just implemented in hardware. Many relevant characteristics and features are implemented by software in the UHSDR "firmware" - it is the UHSDR that mainly gives the OVI40-SDR its powerful performance and versatile features. The maximum visible spectrum span at the moment is 48 KHz, planned to be extended in the future. Zoom-in is possible upto a factor of 32. Waterfall display is also provided and it is even possible to display spectrum and waterfall at the same time concurrently. The OVI40-SDR tolerates 12V .. 16V supply voltage, giving a wide choice of portable or mobile power supply and battery options. The UHSDR operation is intuitive and can be done - at the user's choice - with switches / pushbuttons / rotary encoders, or with the touch-panel screen. The extensive service- and configuration menu is equally accessible via push buttons and rotary encoders. The following modulations are supported standalone without PC:

- LSB, USB, AM, synchronous AM
- FM (including subtome decoding)
- FreeDV for digital voice
- CW (with integrated CW decoder)
- RTTY
- PSK / BPSK

The OVI40-SDR provides plenty of software defined receive Filters:

- 300 / 500 Hz, 1.4 / 1.6 / 1.8 / 2.1 / 2.3 / 2.5 / 2.7 / 2.9 kHz
- 3.2 / 3.4 / 3.6 / 3.8 / 4.0 / 4.2 / 4.4 / 4.6 / 4.8 / 5.0 kHz
- 6.0 / 6.5 / 7.0 / 7.5 / 8.0 / 8.5 / 9.0 / 9.5 / 10 kHz

... in some casess with several selectable center frequencies, band pass or low pass filter. It is planned to introduced variable filters.

UHSDR also provides a "spectral noise reduction", an automatic notch filter, a manual notch filter, a manual peak filter as well as a noise blanker. The noise reduction has a similar performance like the well-known DSP based external "speech extractors". The SSB transmit signal on be compressed digitally, the degree of compression can be changed anytime by the simple turn of a button. CW enthusiasts will appreciate the bin-aural spacial CW reception as well as the built-in keyer (providing iambic modes "A", "B" as well as Ultimatic and straight key). The VFO tuning steps can be adjusted: 1 / 10 / 100 / 500 / 1000 / 5000 / 10000 / 100000 are possible values. Dynamic tuning is also provided, where the tuning step size changes with the VFO rotation speed. The Frequency can also be changed by a simple press on a signal in the waterfall or spectrum display and the OVI40-SDR will tune there.

Dual VFOs are provided and allow true split operation.

Das Gerät speichert pro Band die jeweils letzten EinstThe OVI40-SDR is storing all settings (mode, frequency, filter used etc.) per band. This allows for easy operation when quickly changing bands. Further memories are planned. It will be possible to save or restore these memories an a microSDcard - the OVI40-SDR possesses an in-built microSD-card reader.

Das Gerät lässt sich mit einer einzigen USB-Verbindung zu einem PC mit CAT steuern. Es wird das Protokoll des Yaesu FT-817 emuliert. Parallel zur CAT-Schnittstelle wird über das gleiche Kabel eine USB-Audioverbindung (TX- und RX- seitig) angeboten. Der USB-Audioausgang des mcHF kann via Menü wahlweise auf echtes Audio oder I/Q - Audio umgeschaltet werden, so dass man mit einem externen SDR-Programm (wie z.B. HDSDR) Zugriff auf das komplette RX - Baseband hat. Programme für zusätzliche digitale Betriebsarten lassen sich mit nur einem USB-Kabel, über das dann ja sowohl

16.12.2025 18:10 3/4 OVI40 short description

CAT als auch Audio läuft, mit dem OVI40 verbinden.

Das Gerät besitzt auch elektrische Bandpässe, die sende- und empfangsseitig benutzt werden. Im Sendebetrieb befinden sich am Endstufenausgang noch Tiefpässe, die für einer weitere Verbesserung des Sendesignals sorgen.

Der OVI40-SDR zählt zu den wenigen Geräten, die die digitale Telefoniebetriebsart FreeDV bereits integriert hat. Damit ist FreeDV "gleich eingebaut" und zusätzliche Hardware wie Spezialmikrofone und/oder Computer sind dazu nicht nötig.

OVI40 RF Board

The OVI40 RF board comprises Das RFboard beinhaltet RF Vorverstärker, Mischer, lokaler Oszillator und HF Leistungsverstärker. Das RF Board besteht aus einer Trägerplatte, auf der sich diverse weitere Steckplätze befinden. Es wird über Pfostenstecker mit dem UI-Board verbunden. Durch den modularen Aufbau wird es möglich sein, bei Verbesserungen nur kleinere Platinen zu erneuern, anstatt dass die gesamte RF-Platine erneuert werden muss..

Die Entwicklung der RF-Platine ist noch nicht vollkommen abgeschlossen. Wesentliche Eckdaten ohne Anspruch auf Vollständigkeit:

- RX von VLF (~ein paar KHz) bis ~280MHz.
- TX 50 W auf allen Bändern von 160m...4m, auf 2200m, 630m und 2m (wenn dies mit implementiert ist) 10...20mW aus SMA Buchse
- mitlaufende Preselektion
- PA mit Doppel-LDMOSFET, einzeln eingestellte BIAS Ruheströme. Messung der BIAS Ruheströme über eingebaute A/D-Wandlern. Ruheströme können per UHSDR Software ausgelesen und eingestellt werden.
- TX und RX Mixer mit niedriger Kapazität (geringer Durchschlag des LO)
- echter RX QSD Detektor mit vier Instrumentenverstärkern
- Gewinnung der internen Spannungen (8V, 5V) mit abgeschirmten Schaltreglern, deren Schaltfrequenz per Software so gelegt wird, dass niemals eine Oberwelle der Schaltfrequenz im Empfangsspektrum liegt
- eingebaute Messbrücke mit logarithmischem HF Verstärker, um Antennen vermessen zu können (Real- und Blindwiderstand)
- auf SMA-Buchse herausgeführtes zusätzliches HF-Signal, das unabhängig vom Empfang eingestellt werden kann. Dieser kann z.B. füer eine WSPR Bake genutzt werden, die parallel und unabhängig vom Sender betrieben werden kann.
- Nutzungsmöglichkeit des TRX als Messgerät (Netzwerkanalyzer)?
- Transverterfähig

Wenn die Alpha-Entwicklungsphase abgeschlossen ist, werden die Informationen vervollständigt.

Frequenzaufbereitung

Der OVI40 arbeitet im Empfangsbereich bis 48 kHz als echter Direktsampler. Ab 48 kHz aufwärts arbeitet der Empfänger als QSD.

Entsprechend arbeitet der lokale Oszillator (LO) beim OVI40-SDR:

- 5KHz < F(RX) < 48KHz: Direktwandlung
- 48KHz < F(RX) < 3.5MHz: $F(LO) = F(RX) \times 4$
- 3.5MHz < F(RX) < 292MHZ; F(RX) = F(LO)

Nach Datenblatt geht der verwendete SI5351 LO maximal bis 160MHz. Auf vielen Seiten des Internets (unter anderem von QRP Labs) wurde aber herausgefunden, dass man so gut wie immer bis 292 MHz kommt. Dies hat DF80E an 10 SI5351 (Erfolgsquote 100%) verifiziert.

Das RF Board verwendet einen QSD und die beiden um 90° versetzten LO-Signale werden durch geschickte Konfiguration des SI5351 direkt an zwei seiner drei Ausgänge erzeugt - ohne eine Teilung.

Leider ist es technisch nicht möglich, diese 90° versetzten Signale im gesamten Arbeitsbereich des SI5351 zu erzeugen - unterhalb von ca. 3,5 MHz kann man nicht mehr durchgängig für jede Frequenz einen 90° Phasenversatz hinbekommen. Folglich verwendet das RF Board im Frequenzbereich unterhalb ca. 3,5 MHz nach wie vor einen Teiler.

Tranverternutzung

Transverter Einstellungen in der Software

Die UHSDR Software unterstützt bereits die Transverter Offseteinstellung. Dazu:

- 10m-Band (oder 20m Band) wählen als Transverterband
- in Config-Menü XVTR Offs/Mult. auf ON
- eine Zeile tiefer in XVTR Offs die Frequenzdifferenz einstellen (in d. Regel die Quarzfrequenz)

OVI40-SDR Transverter Hardware Support

Der OVI40 hat an diversen interessanten Schnittstellen die Signale an SMA-Buchsen herausgeführt. Die Buchsen sind nicht fest mit der RF-Platine verbunden, damit man Gehäuse-mäßig nicht eingeschränkt ist. Auf der RF-Platine bzw. den entsprechenden Modulen werden TE-Connectoren (U.FL "Norm") platziert sein, an die man bei Bedarf die entsprechenden Adapterkabel anschließen und irgendwo individuell an seinem Gehäuse verbinden kann.

Die Transverter Signale sollen so rein wie möglich sein. Deshalb werden sie vor der PA abgegriffen sowie nach dem Vorverstärker am RX.

https://amateurfunk-sulingen.de/wiki/ - Afu - Wiki des DARC OV Sulingen I40

Permanent link:

https://amateurfunk-sulingen.de/wiki/doku.php?id=en:ovi40what:description&rev=1518033500

Last update: 07.02.2018 19:58

