stub

UHSDR Fehlerbeseitigung (Troubleshootig)

UI Board "tot" - MCU ("bricked")

Wenn kein Hardware-Defekt vorliegt, kann es helfen:

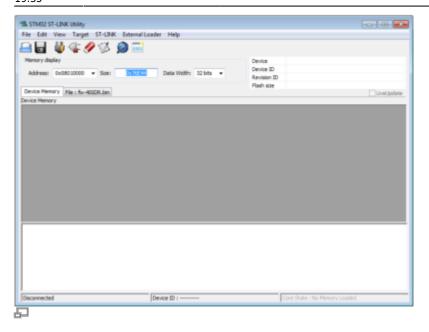
- den Bootloader re-installieren
- die Firmware re-installieren

Falls ST-Link vorhanden

Note: ToDo Text on unbricking

Eine nicht mehr funktionierende OVI40 MCU kann - sofern es sich um keinen Hardware Defekt handelt - via ST-Link V2 Adapter und .bin-Datei wiederbelebt werden. Die Dateien dazu finden sich hier.

Github Doc


Benötigt wird:

- STM32 ST-Link Programm
- ST-Link V2 Adapter, günstige kompatible Nachbauten des Adapters finden sich auf Amazon, ebay etc.
- Neueste Bootloader und UHSDR Firmware.

Note: Following based on https://www.amateurfunk-sulingen.de/forum/attachments/UHSDR STlink.pdf

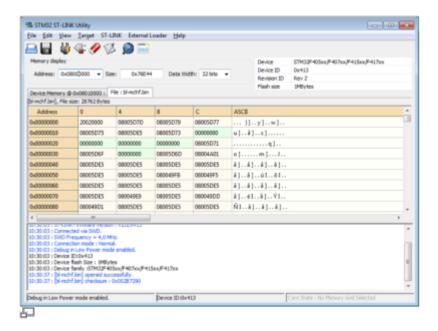
1. Vorraussetzung

STlink Software ist installiert, Adapter ist angeschlossen und Rechner ist mit den Internet verbunden. Firmware im STlink Adapter auf neuesten Stand bringen. Dazu im Reiter ST-Link Firmware update anklicken, und dort dann device connect anklicken. Nach kurzer Zeit wird die aktuell installierte STlink V2 Firmware Version angezeigt. Gibt es dort eine neuere Version sollte man das update auch durchführen.

2. Adapterkabel

Das Adapterkabel sollte nicht länger als 10cm sein. Es werden 3 oder 4 Litzen verbunden.

ST-link UI	JP8
JTAG-9 SWCLK	JP8 Pin 4
JTAG-7 SWDIO	JP8 Pin 3
JTAG-20 Gnd	JP8 Pin 6
nicht unbedingt nötig: Signal: Reset	JP8 Pin 2

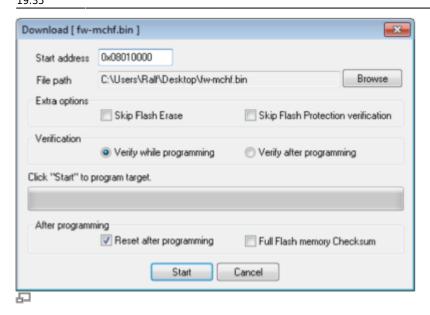

Beschreibung ST-Link V2 und ST-Link ISO Adapter, Pin out

Connection ST-Link to UI board (photo F4HTX)

3. Connect

Hat man alles richtig gemacht erscheint nach betätigen von Target ☐ Connect sowie File → Open (entsprechendes *.bin file auswählen) folgender Bildschirm (hier Beispiel mchf Bootloader)

4. Programmierung starten


Programmierung starten mit Target → Program & Verify In dem dort sich öffnenden Fenster die Start adress für das *.bin file eintragen

Startadresse für den Bootloader: 0x08000000 Dann mit Start den Programmiervorgang auslösen Nun das Firmware *.bin file über File → open laden Programmierung starten mit Target → Program & Verify In dem dort sich öffnenden Fenster die Start adress für das *.bin file eintragen

Für den Bootloader: 0x08000000

Download [bl-n	nchf.bin]	■		
Start address	0x00000000			
File path	C:\Users\Ralf\Desktop\bl-mchi	.bin Browse		
Extra options	Skip Flash Erase	Skip Flash Protection verification		
Verification	Verify while programming	 Verify after programming 		
Click "Start" to p	rogram target.			
After programm	ing ☑ Reset after programming	Full Flash memory Checksum		
Start Cancel				

Startadresse für die Firmware: 0x08010000 Dann wieder mit Start den Programmiervorgang auslösen.

5. Fertig

Das war es dann auch schon. Bootloader und Firmware sind nun Programmiert.

MCU Registerwerte wiederherstellen

- 1. Auch hier wird das ST-Link Tool benötigt. Man braucht keinen Account, es reicht Name und Email anzugeben, der Download-Link kommt dann per Email.
- 2. Verbinde den ST-LINK USB (3 Leitung SWDIO, SWCLK und GND) mit den entsprechenden Pins von UI Board P8, siehe oben.
- 3. Spannung anschalten und dann im ST-Tool auf Menu "Target" "Connect" klicken. Der Prozessor sollte erkannt werden. Wenn nicht, nochmal die 3 Leitungen kontrollieren, ob da nicht etwas vertauscht ist.
- 4. Wenn das alles klappt, kann man mit "Target" "MCU Core" die Register des Prozessors auslesen.

Dies sind die korrekten Werte für die MCU "Option Bytes":

Read Out Protection:	Level0
BOR-Level:	Level3
IWDG_SW:	gesetzt
WWDG_SW:	gesetzt
nRST_STOP:	gesetzt
nRST_STDBY:	gesetzt
FZ_IWDG_STOP:	gesetzt
FZ_IWDG_STDBY:	gesetzt
nDBOOT:	gesetzt
nDBANK:	nicht gesetzt
BOOT_ADD0:	0x0080 Boot from 0x200000
BOOT_ADD1:	0x0040 Boot from 0x100000

bei keiner der Boxen unter "Flash Section Protection" ist ein Haken	
gesetzt	

SW Fehler ("Bugs") im Bootloader oder in Firmware

Die Liste der offenen Fehler findet sich hier.

- Fals der Fehler in der Liste ist:
 - Hilfreiche zusätzliche Informationen bitte als Kommentar zur Fehlermeldung posten
 - Wenn der Fehler "in Bearbeitung" ist bitte etwas Geduld. Alle Entwickler arbeiten ehrenamtlich und in ihrer Freizeit daran, UHSDR zu verbessern
- Falls der Fehler nicht in der Liste ist, bitte in der Liste der **geschlossenen** Fehler nachsehen.
- Falls nicht in der Liste der offenen und geschlossenen Fehler:
 - Im Forum diskutieren vor allem wenn man unsicher ist ob es sich tatsächlich um einen SW Fehler handelt
 - Neue Fehlermeldung erzeugen

From:

https://amateurfunk-sulingen.de/wiki/ - Afu - Wiki des DARC OV Sulingen I40

Permanent link:

Last update: 23.01.2018 19:35

